|
|
極詳細 + 超深入:最新版TensorFlow 1.x/2.x完整工程實作
原價:
HK$400.00
現售:
HK$380
節省:
HK$20 購買此書 10本或以上 9折, 60本或以上 8折
購買後立即進貨, 約需 7-12 天
|
|
|
|
|
|
出版社: |
深智數位
|
出版日期: |
2020/01/20 |
頁數: |
904 |
ISBN: |
9789865501136 |
|
商品簡介 |
TensorFlow 是目前使用最廣泛的機器學習架構,滿足了廣大使用者的需求。如今TensorFlow 已經更新到2.x 版本,具有更強的便利性。
本書透過大量的實例說明在TensorFlow 架構上實現人工智慧的技術,相容TensorFlow 1.x 與TensorFlow 2.x 版本,覆蓋多種開發場景。
◎ 詳盡闡述tensorflow 1.x/2.x完整內容
◎ 75個實作專案,包含最接近工業 / 商業用的典範
◎ 由淺入深的完整解說,徹底體會TensorFlow之美
史上強大的AI框架Tensorflow 2.X版終於出來了。
在綜合PyTorch的動態圖架構和併入高階API Keras之後,Tensorflow又重回AI框架最炙手可熱的明星之一。
本書是針對已經有Tensorflow基礎的讀者,幫助讀者具備基礎的深度學習知識之後,更強化自身的功力。不再拘泥於簡單的CNN、MNIST、RNN等太基礎的內容。
全書重點包括:
75個工業及商用專案的完整實作
在Windows/Linux下安裝Anaconda及GPU、CUDNN的完整介紹
大量Transfer Learning的預載入模型說明
Tensorflow的專屬資料集格式
TF-Hub retrain或是fine-tune完整的預載入模型
利用tf.estimator及tf.keras訓練模型的完整過程
用Tensorflow做離散及連續資料的特徵工程
不再只是單純的CNN,用膠囊網路做更準確的圖形辨識
不只RNN,還有GRU及Attention機制、SRU、QRNN及Transformer機制
自己動手做YOLOV3 Darknet
最完整的Normalization說明,包括Batch Norm、Switchable Norm
GAN大全,包括DeblurGAN及AttGAN
CS612照片加工的AI基礎
製作Tensorflow的模型完整說明
在樹莓派、iPhone、Android上佈署Tensorflow的模型
本書特色
1. 相容TensorFlow 1.x 與2.x 版本,提供了大量的程式設計經驗
兼顧TensorFlow 1.x 與2.x 兩個版本,列出了如何將TensorFlow 1.x 程式升級為TensorFlow 2.x 可用的程式。
2. 覆蓋TensorFlow 的大量介面
由於TensorFlow 的程式反覆運算速度太快,有些介面的搭配文件並不是很全。作者花了大量的時間與精力,對一些實用介面的使用方法進行摸索與整理,並將這些方法寫到書中。
3. 提供高度可重用程式,公開了大量的商用程式片段
本書實例中的程式大多都來自程式醫生工作室的商業專案,這些程式的便利性、穩定性、再使用性都很強。讀者可以將這些程式分析出來直接用在自己的專案中,加快開發進度。
4. 書中的實戰案例可應用於真實場景
書中大部分實例都是目前應用非常廣泛的通用工作,包含圖片分類、目標識別、像素分割、文字分類、語音合成等多個方向。讀者可以在書中介紹的模型的基礎上,利用自己的業務資料集快速實現AI 功能。
5. 從專案角度出發,覆蓋專案開發全場景
本書以專案實作為目標,全面覆蓋開發實際AI 專案中所有關的知識,並全部配有實例,包含開發資料集、訓練模型、特徵工程、開發模型、保護模型檔案、模型防禦、服務端和終端的模型部署。其中,特徵工程部分全面說明了TensorFlow 中的特徵列介面。該介面可以使資料在特徵處理階段就以圖的方式進行加工,進一步確保在訓練場景下和使用場景下模型的輸入統一。
6. 提供大量前端論文連結位址,便於讀者進一步深入學習
本書使用的AI 模型,大多來自前端的技術論文,並在原有論文基礎上做了一些結構改進。這些實例具有很高的科學研究價值。讀者可以根據書中提供的論文連結位址,進一步深入學習更多的前端知識,再配合本書的實例進行充分了解,達到融會貫通。本書也可以幫助AI 研究者進行學術研究。
7. 注重方法與經驗的傳授
本書在說明知識時,更注重傳授方法與經驗。全書共有幾十個「提示」標籤,其中的內容都是功力很高的成功經驗分享與易錯事項歸納,有關於經驗技巧的,也有關於風險避開的,可以幫助讀者在學習的路途上披荊斬棘,快速進步。
|
|
|
|
|
|