The "leave no one behind" principle of the 2030 Agenda for Sustainable Development requires appropriate indicators for different segments of a country's population. This entails detailed, granular data on population groups that extend beyond national trends and averages. The Asian Development Bank, in collaboration with the Philippine Statistics Authority and the World Data Lab, conducted a feasibility study to enhance the granularity, cost-effectiveness, and compilation of high-quality poverty statistics in the Philippines. This report documents the results of the study, which capitalized on satellite imagery, geospatial data, and powerful machine learning algorithms to augment conventional data collection and sample survey techniques.