Part I The Analytic Setting.- A First Generalisation of the Notion of Space: Spaces of Infinite Dimension.- Banach Spaces and Hilbert Spaces.- Linearisation and Local Inversion of Differentiable Maps.- Part II The Geometric Setting.- Some Applications of Differential Calculus.- New Generalisation of the Notion of a Space: Configuration Spaces.- Tangent Vectors and Vector Fields on Configuration Spaces.- Regular Points and Critical Points of Numerical Functions.- Part III The Calculus of Variations.- Configuration Spaces of Geometric Objects.- The Euler-Lagrange Equations.- The Hamiltonian Viewpoint.- Symmetries and Conversation Laws.- Appendix: Basic Elements of Topology.- References.- Notation Index.- Subject Index.