★版權熱銷全球17國
★蟬聯《紐約時報》暢銷榜18週
★《芝加哥論壇報》、《洛杉磯時報》等重量級媒體,一致推崇!
顛覆數學與生活無關的刻板印象
5堂生活數感課X 42個開眼界案例
當你將已知的知識轉化為數字思考時,
令人意想不到的事實將得到解釋!
「設密碼時,20位數最有效!」
「標榜200%有效的產品,代表可以消除問題兩次!」
「明天會比今天熱兩倍,因為氣溫從25度上升到50度。」
「星期六下雨的機率是50%,星期天下雨的機率也是50%,所以週末下雨的機率是100%。」
如果看完上述四個問題,你覺得「很有道理」!
那麼,你一定要翻開《數盲、詐騙與偽科學》,因為:
許多你以為真實可靠的資訊,
其實是一本正經的胡說八道!
為什麼備受信服的資訊,卻是披上科學外衣的假訊息?
哪些你以為正確的知識,其實早已被數據操弄?
這些問題的答案,就在於:
你的心中有「數」嗎?
數盲,指沒有能力處理數字和機率概念的人。
但若「不擅計算」、只憑直覺和經驗行事,
就非常可能被當「盤子」騙、受統計數據的愚弄!
讓超人氣數學家約翰.艾倫.保羅斯,
帶你將生活情境轉換成數學思維,
識破舉著科學旗幟招搖撞騙的謬論!
◤Lesson 1 強化數字感,抱持合理的懷疑
──掌握最基本的數字認知,就有辦法拆穿經過偽裝的壞論證!
◤Lesson 2 不是巧合,而是很可能發生……
──看「過濾現象」,如何影響我們對資料、情況的理解。
◤Lesson 3 偽科學是否也曾騙到你?
──很多常見的推理謬誤,都是因為不了解「條件機率」!
◤Lesson 4 為何受過良好教育的人,會變成數盲?
──是不是沒人告訴過你:四捨五入與合理的估計,和人生大有關係。
◤Lesson 5 統計、取捨與人生
──何時賣股?戀愛要不要主動出擊?其實跟「假設檢定」有關!
本書蒐羅許多邏輯陷阱、數字迷思,以5大章節、42個貼近生活的案例為例,一步步帶領讀者區分扭曲的資訊以及真正的洞見。學會從日常中發現疑問、驗證假設、找到答案,擺脫數盲人生,奠定解決問題能力!
好評推薦
PanSci 泛科學
彭建文|問題分析與決策專家,《思維的良率》作者
賴以威|台師大電機系副教授,數感實驗室共同創辦人
各界讚譽
「閱讀這本書,就像在和風趣、健談的數學天才交流一樣。他既能談論深奧的數學概念,也能讓讀者笑著學習。」──克里斯多福.法雷爾(Christopher Farrell),《商業週刊》(Business Week)
「數盲肯定會從這本有趣的好書中獲益。」──莫里斯.克萊因(Morris Kline),《紐約時報書評》
「如果常人能真正理解這本了不起、且重要小書中的思想,整個社會將無以倫比的不同。」──侯世達(Douglas Hofstadter),電腦科學家
「這是一本簡練優美的數盲自救手冊,筆觸機智幽默,而且處處可見實際上的應用。」──史戴方.坎佛(Stefan Kanfer),《時代》雜誌
「在約翰.艾倫.保羅斯的帶領下,我們離『數感』又更近了一步,而這裡最能讓人擺脫蒙昧。」──克里斯多福.拉曼-哈普特(Christopher Lehmann-Haupt),《紐約時報》
「這本可佩的小書篇幅不長,你花兩個小時就能讀完。但這很有可能是你人生中最有啟發性、甚至受益最大的120分鐘。」──亨利.基瑟(Henry Kisor),《芝加哥太陽報》(Chicago Sun-Times)
「就像保羅斯所見,這個世界不見得有多神祕,但非常精奧;沒有太多魔法,但相當奇妙。很多看來很奇特的事件,其實非常合情合理。這些事件『發生』與『不發生』之間,有種(沒有想像中)可畏的對稱性。從這個觀點來看,一切更加意義重大。」──亞瑟.撒爾(Arthur Salm),《聖地牙哥論壇報》(The San Diego Tribune)
作者
約翰.艾倫.保羅斯(John Allen Paulos)
天普大學(Temple University)數學系教授。保羅斯在學術期刊上發表許多關於機率、邏輯和科學哲學的論文,其文章也散見於《紐約時報》、《華爾街日報》、《富比士》雜誌上。他經常在全國性的刊物中評論數學、投資、新聞和日常生活間的關係,論點精闢幽默,受到美國數學與金融界的高度讚賞。
保羅斯曾榮獲美國科學促進協會(American Association for the Advancement of Science)所頒發的「促進大衆理解科學獎」(AAAS Award),也曾獲頒「美國數學聯合政策委員會獎」(JPBM Communications Award)。
著有《投資,是放大人性的機率遊戲》。
譯者簡介
吳書榆
國立臺灣大學經濟學學士、英國倫敦大學經濟學碩士。曾任職於公家機關、軟體業,擔任研究、企劃與行銷相關工作,目前為自由文字工作者。
目錄
新版序言 數學無用?是你誤會大了
前言 數盲,其實普遍存在於生活之中
Chapter 1 強化數字感,抱持合理的懷疑
如果你對機率一無所知,可能會覺得發生車禍是相對無關緊要的當地交通問題,前往海外遭到恐怖分子殺害則是重大風險。
.數字很大,機率很小
.鮮血、高山與漢堡
.大數目與富比士400大富豪榜
.阿基米德與實務上的無限大
.乘法原理和莫札特的華爾滋舞曲
.三球冰淇淋和馮紐曼的花招
.凱撒大帝與你
Chapter 2 不是巧合,而是很可能發生……
數盲的一大特質,就是常嚴重低估巧合出現的機率,看輕實際且嚴謹的統計證據。但其實,即便是很罕見的事件,也大可預測。
.數盲的一大特質是……
.小世界、巧遇與鴿籠原理
.股市騙局、人性與極端值
.從驗血到賭局,期望值能告訴你的事
.尋找愛情,有公式?
.巧合、真兇與約會大作戰
.公平硬幣與人生的贏家和輸家
.絕佳手氣、關鍵打者與卜瓦松分布
Chapter 3 偽科學是否也曾騙到你?
偽科學中有很多缺陷,但數盲視而不見。很難想像他們會因為證據不足、或有更好的替代解釋,就去否定通靈等超自然現象。
.數盲、詐騙與偽科學
.心靈玄學的真相
.預知夢、猴子與莎士比亞
.占星術的背後
.外星生命、外星人,傻傻分不清楚
.醫療,是偽科學的沃土
.搞混條件機率,才讓騙局有機可乘
.靈數命理學,真的假的?
.日常邏輯迷思,無所不在
Chapter 4 為何受過良好教育的人,會變成數盲?
很多人可以理解對話中微妙的情緒變化、明白文學中最難領會的情節,但就是無法掌握數學證明中最基本的要領。
.數盲與他們的產地
.數學如果這樣教,就好了
.抗拒心態助長了數盲,更糟的是……
.反常、均值回歸與人性
.小心!你中了機率謬誤嗎?
.數學焦慮症,有解嗎?
.有數字,就沒有人性……真的嗎?
.對數、安全指數與打擊數盲行動
Chapter 5 統計、取捨與人生
人們也一直誤用小學時教的比率概念。一件洋裝價格先「調降」40%,之後再降40%,等於降價64%,而不是80%。
.社會的偏好,其實不符合邏輯?
.利益、囚犯困境與兩難人生
.生日、死期與假設檢定
.第一型和第二型錯誤:從政治到帕斯卡的賭注
.究竟,我們該多相信估計值?
.如何從雜亂無章的數據資料中,找出有用的資訊?
.統計學的兩大支柱
.你能分清「相關」與「因果」嗎?
.乳癌、薪資與統計錯誤
.這些問題,你有用數學方式想過嗎?
結語 感受數值比例,找到生活答案
序/導讀
前言
數盲,其實普遍存在於生活之中
「數學向來是我最爛的一科。」
「100萬美元、10億美元、1兆美元,隨便。只要我們可以解決這件事,多少錢都不是問題。」
「我和傑瑞不能去歐洲了,都是恐怖分子害的。」
數盲,是指沒有能力自在地應對和數字以及機率有關的基本概念。這項缺點讓太多在其他方面博學多聞的人受了很多苦。這些人會因為別人混用「隱含」和「推斷」而感到苦惱,但看到數字上出現錯誤與矛盾,就算是嚴重失當,回應時也絲毫不見尷尬。我還記得,有一次在派對上聽到一個人侃侃而談「繼續」和「持續」有什麼差別,當晚稍後我們看新聞報導,氣象播報員說星期六的下雨機率是50%,星期天也是50%,結論是那個週末下雨的機率是百分之百。那位自封文法家的先生覺得這話很對,就連我向他解釋錯在哪裡之後,他也沒什麼表示。但如果天氣播報員的語法錯誤,他可能會比較火大。人常會隱藏其他缺點,但數學不好這件事不一樣,多半都是明目張膽表現出來:「我連平衡收支帳都做不到。」「我這個人關心的是人,我不關心數字。」或者「我向來痛恨數學。」
人們會洋洋得意於自己對數學很無知,部分原因是數學不好造成的後果,不像其他缺點這麼明顯。基於這一點,再加上我堅信人對於用具體範例來說明更有反應,對於一般性的描述比較無感。因此,本書會檢視許多真實世界裡的數盲範例,包含股票詐騙、擇偶、報紙專欄上的占卜師、飲食和醫療主張、恐怖主義的風險、占星、運動賽事數據、選舉、性別歧視、幽浮、保險和法律、心理分析、超心理學、樂透以及藥物試驗等等。
我努力避免太自以為是的言論,也不要用哲學家艾倫.布魯姆(Allan Bloom)式的批判,來泛論流行文化或是教育系統,但我還是提出了一些通論式的評論與觀察,但願我舉的例子能支持我的論點。我的看法是,有些人無法游刃有餘地面對數字和機率,是源於對不確定性、巧合或問題呈現方式的自然心理反應。或者是,出於焦慮,或是對數學的本質和意義懷抱不切實際的誤解。
數盲會造成一種罕有人討論的後果:數盲和相信偽科學有關。本書會討論兩者之間的交互關係。在現代這個社會,每天都會出現基因工程、雷射科技、積體電路等新科技,讓我們更進一步理解這個世界。但有很多成人仍相信塔羅牌、通靈和水晶的力量,特別讓人難過。
更不妙的是,科學家對於各種風險的評估,和一般人對於這些風險的認知大不相同,兩者間的落差最後要不就引發沒有根據、但殺傷力極大的焦慮,要不就導致人們要求得到根本做不到、而且會癱瘓經濟的無風險保證。政治人物在這方面幫不上忙,因為他們的工作就是處理公眾的意見,因此不樂於說清楚可能會造成哪些危險,以及有哪些相應的取捨,但這是幾乎所有政策要面對的問題。
本書大部分談的是各種不當,比方說沒有數字觀點、過度重視無意義的巧合、輕信偽科學、無能識別社會中的各項取捨等等,寫來很有破解流言的意味。但我希望我有避開很多人這麼做時,都會露出的過度激昂和譴責語氣。
本書盡量用溫和可讀的方式來談數學,只採用一些基本的機率和統計概念。雖然某種程度上來說有一點深,但只需要具備常識與一些演算能力即可領會。而我也會分享一些概念,是過往很少用淺顯易懂的方式來討論的。我的學生多半很喜歡這些內容,但他們也常會問:「考試時會考這個嗎?」讀這本書不用考試,所以讀者可以好好享受,偶爾一些比較困難的段落,跳過也沒問題。
本書的主張之一,是數盲會基於個人經驗、或因為媒體側重個別性與戲劇性效果,而受到誤導,有強烈的對人不對事傾向。但這句話不代表數學家就不帶個人情感、或是一板一眼,我就不是,這本書也不是。我寫這本書的訴求對象,是受過教育但是數盲的人。或者,至少是對數學還沒有怕到死,不會看到數學兩字就癱軟的人。如果能因此講清楚數盲在我們的公、私生活中有多麼普遍,寫這本書就值得了。